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1 Introduction i

AL
2 Fractals

We may have observed the raw fruit of the kadam tree (see Fig.(?7)), the outline
of a cloud or a time-worn, wrinkled face. Or dynamical phenomena such as the
zig-zag path of a swimming algae (see Fig. (?7)), the growth of polymers, the
propagation of cracks, lightning discharge, or the path of a diffusing impurity in
a solid. Some have us may have also studied a capacitance iransient (see Fig.
(?7)) or a nuclear decay curve or a first order chemical reaction.

The outlines of such phenomena siuggest thatl these are so jagged that the
curves are “long” and at most points "non-differentiable”. We examine one
such curve, say the coasiline of an island. 1t appears smooth and pearly from
far. But as we come closer it appears increasingly irregular. This is one of the
characteristics of a fractal curve. The higher the resolution, the more irregular
the curve. Often this irregularity has a symmetry paradoxical as this may sound.
The outline at a given resolution is similar to the outline at a finer resolution.
We shall discuss this self-similar feature of a fractal curve.

A formal procedure to define a fraclal proceeds in the following fashion.
Consider a straight segment of unit length as shown in Fig. (77). Below it we
show three scales or standards denoted by I. The one to the left is of unit length
and the other two are of lengths one-half (I = 1/2) and and one-third (I =1/3)
respectively. We ask ourselves the following question. How many times N(I) do
we need to repeat the scale {or standard) so that it spans the straight segment
of unit length? The answer is 1, 2 and 3 times respectively with the three scales.
It is thus easy to accept the following scaling law for this straight segment,

N(l) ~ s

where dg is the Euclidean dimension. In the present case dg = 1. For the area
of regular.closed curve it is easy to sce that dg would be 2 and similarly 3 for
solid object such as a cube. We can show that for some of the irregular curves
mentioned above the scaling law wounld involve an exponent dy which is not an
integer. We call d; the fractal dimension. Thus

N ~ 1 (1)
We may formalize this by defining a measure u,

. T
hn NI = p (2)

where p is finite and non-zero at a particular value of d, namely d for a fractal
curve and dg for a regular curve,

Construction of a fractal We shall consider a number of examples of frac-
tal enrves by actually constrneting them.

Example 1: Consider a unit segment. As we approach it the middle third
assumes the outline of an equilateral triangle. Alternatively we can say that
as our standard ! shrinks, it spans a larger length. This process repeais as we
come closer and closer or alternatively our standard shrinks further. The Fig.
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(?7) illustrates this process. It has a sell-similar character. The figure is called
a symmetric Koch curve.

We will calculate the fractal dimension of symmetric Koch curve.
From Fig. (??7) we can gencrate following table (Table (4.1)).

We then have the relationship

N{) ~ I
nid
noa (1 :
o - ()
In4
Hence dy = na

Note: Fractul dimension of this curve is between Euclidean dimension 1
and Euclidean dimension 2.

Example 2: We calculate fractal dimension of another curve which in lit-
erature roes by the name of Cautor Dust. This is illustrated in Fig. (?7).

By looking at the Fig. (?7) we arrive at the following table (Table {(4.2))

where [, and N(l} have their usual meanings.
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Note: Fractal dimeunsion of this curve is between Luclidean dimension 0
and Euclidean dimension 1.

Example 3: To colculate fractal dimension of assymetric Koch curve.
This is solved by using the properties of measure jr .

o= lim SN ()L (3)
Forn=20
=1
Nih)=1
n" 0
i ()
Forn=1
— =t
=i 2= 7



Nh)=1,;, Nl =2

1 1
5 ) Z?.—Z y 13‘—

N{lh)=1; N{la)=06;N(ls)=9

wmi= ()5 3))
et ((3) 0= (2))

We demand that ILm Uy, must be finite and non-zero. Therefore
n—o0

() o)) =

Similarly.

hence. . J
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Define
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Hemnce,

3z +z—-1=0

Solving the above quadratic equation we get,

Lt V13
_— 4
from above we have,
-1+ 13
=t T,
F = T me T in2 -

Note: Fractal dimension of this curve is between Euclidean dimension 1
and Euclidean dimension 2.

Remarks Now that we are conversant with how to construct a fractal, a few
remarks about them are in order. We note some characteristics of the curves
we have constructed. They are infinilely long yet apparently confined to a finite
space. As the stendard size shrinks they become non-differentiable at more and
mote points. Finally they are self-similar. Note however that not all fractal



curves are sell-similar. On a historical note. fractals are not entirely recent.
They wore known in the late nineleenth century as “monster enrves”.

An experimental way to arrive at the [ractal dimension is to measure N(I) as
{ shrinks and to plot the logarithm of these quantities. The slope should give us
an idea of the fractal dimension. At the end of this chapter there are references
which deseribe a variety of methods to uncover the fractal dimension.

Why do fractals occur in nature? We cannot give a comprehensive answer
to this. Ilowever the following example may help us. When a cell grows, it
divides. This is called cell mitosis. The division occurs since as the cell grows
the natrient requirement of the cell voluine increases. But the surface through
which the cell gathers its nutrients does not keep pace. In other words the surface
to volume ratio shrinks. For larger animals such as humans this problein is even
more acute. So our nutrient absorbing organs acquire a complicated “fractal”
character. The small intestine is over three meters long, folded and tucked inside
our abdomen. Its inner surface has thousands of hair like protrusions called villi,
reminiscent of a modern bath towel which has thread-like protrusions and quite
efficient at drying us. Our lungs have millions of air sacs called alveoli and its
inner surface is indeed large. A human lung can be laid out and stretched over
20 meters! It has also been claimed that the eigenstates of dizordered systems
has a fractal character,

3 Two Dimensional Shapes

Consider a soap bubble or a bee's honeycomb {see Fig. (77?)). There is n
pattern which suggest. that we study the arrangement of cells in a network.
Cellular matter aroused the curiosity of Robert Hooke who in 1660 perfected
the microscope and used it to look at cork. He found that it consisted of
hexagonal shapes in one plane and box - like shapes in the perpendicular one.
He slso identified the basic nnit of biological structure and called it a *cell”.
One can verify the the above laws in a wide variety of situations be it a
section of polycrystalline MgO or an arrangement of villages in rural India or
even animal habitats. If the points nucleate randomly in space but at the same
time and all grow with the same linear growth rate. then the initial structure
is a random Vorono: honeycomb (two dimension) or a Voronei foam (three
dimensions). The cells obviously fill space, and are random. A honeycomb made
in this way (Fig. (??)) looks very different Irom neat hexagons, but it still has
the number of sides per face 7i = 6 as Euler's law (see below) requires. The
nenrest thing to Voronoi structures in nature are cellular solids created by the
competitive building of sea creatures and of insecis: coral and some sponges;
the nets of wasps and ants; and ofcourse, the bee’s honeycomb. Their great
regularity looks quite different [rom the Voronoi honeycomb of Fig. (?7) That
is becanse the creature has a finite size, excluding the nucleation cells from
points which are closer than this. This too can be modelled and the resuli as
one might expect, is o foam or a honeycomb of much greater regularity. An
example is shown i Fig. {??) in which an array of points are random with the
vonstraints that no two can be closer than a chosen “exclusive distance”. The
result is nol. unlike some natural structures {pariicularly the nest of the wasp).
But it still has a slightly angular look that most familiar honeycombs lack. That
is because the compelilive growth is not the only lacior which shapes [oams.



There are several others, The most obvicus of this is surface tension. When
this is the dominant shaping force, then an evenimore regular structure ocenrs.

From a geometric peint of view it is helpful to think of a cellular structure
as vertices, joined hy edges, which surround faces, which enclose cells. {In two
dimensions we lose one dimension and think of vertices joined by edges which
enclose faces or cells.) The number of edges which meet at a vertex is the edge-
connectivity, Z, (it is usually three in a honeycomb and four in a foam but it
can have other values). The number of faces which meet at an edge is the face
connectivity. Z; (usually three for a foam but it, too, can have other values).
The number of vertices, V' of cdges E of faces FF and of cells C are related by
Euler’s law which, for a large aggregate of cells, states that:

F-E+V =1 (two dimensions) (4)
~-C+F-E+4+V = 1 (three dimensions). {5)
Fro a general edge co-ordination Z,, we have,

22,
7, 50

fim (two dimensions)
which of course reduces to & = G, when Z, = 3. Here #i is the average number
of sides per face.

The Aboav-Weaire law and Lewis’s rule: We often sce that the seven
edge cell in a honeycomb has a five edged partner, often as a neighbour. It is
generally true that & cell with more sides than average has neighbours which,
taken together, have less than the average number. This correlation was noted
by Aboav in pictures of honeycombs. The observation is described for honey-
combs by Aboav and was given a formal derivation by Weaire:

m=5+ 8 {6)
n
where 1 is the number of edges of the candidate cell and 7 is the average number
of edges of its n neighbours.

The study of cells topology (biological cells this time) has turned up an-
other remarkable result. Lewis, examining a variety of two-dimensional cellular
patterns, found that the aren of a cell varied lingarly with the number of its
edges:

Aln) _n-ng

AlR) -y
where A(n) is the area of a cell with the average number of sides, 7, and np is o
constant (Lewis finds ng = 2).This rule holds for Voronoi cells; Lewis finds that
it holds for most other two dimensional cells as well.

4 3-Dimensional Structures

Whalt kind of disorders do you expect? How do you characterize them?
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: SUBSTITUTIONAL DISORDER
Lattice exists bnt atoms of two species occupy them ab random
Example: Cuj-gNiz on an L.e.c lattice

Gads) - Shy A zine blended lattice.
The question of characterizing them is linked with the question,” What
kind of theory vou want to do?”
For CPA {Effective Medium Theory) you need.

{i) Underlying Xtal structure.

(i1} Latticc constant.

(iii) The concentrations of Cu and Ni (A and B atoms) 4 & Ty
Ca+Cg=1

These are the three structural parameters you need.

: LIQUID LIKE DISORDER
Consider liquid mctal. Most mctals in solid state have f.e.c structure. This
isa

(i) close packed structure with packing [raction=~ 0.74.
{ii) n.n. =12

It is believed that the liquid state metal ulso must resemble the solid. This
idea was pioneered by Besnal who proposed a Deuse Random Packing of
Hard Spheres (DRPHS). The Bernal School’s effort reached titanic pro-
portions with Finney(1970)

Found: packing fraction 0.64
n.ae. = 8 {can be stretched to 12, like beauty it all lies in the
eve of the beholder)
But in a real liquid metal, packing fraction= 0.71
. Opinion was turned against this DRPHS until it was realized that solt
spheres should be used. This rectified matters.
Bennet(1972) obtained similar results by resorting to a computer algo-
ritlun.
‘The important parameter is the radial or pair distribution function.

g(R) = g(|R|)

How lo characlerize these malerials. Again i depends on the type of
theory employed. For an effective medium theory

(1) n: # density of ions (atoms)
(i) g(R) pdf
Applications:

(1) Liquid Metals
{ii) Metallic Glass



II1 : TOPOLOGICAL DISORDER
q(R) : depends on R
Angular Dep.
Ex. oo — 5i: Bond length = Xtalline hond length
Bond Lle = Xtalline bond Lle
Dihedral Lle = 10% diafirtion

Dihedral Lle = 60% in diamond / zinc-blende

= (0° wurtite.
No good effective medinum theory, since no one has a handle on how to char-
acterize the disorder. Hence the popularity of Bethe lattice Approaches

EXERCISE 4

1. Read the passage and answer the questions based on it.

in his varied wanderings Budhuram chanced upon a huge medieval church
in a small Italian town. The church had a fascinating history. It was
a massive complex structure the likes of which he had not seen even in
Rome. He learnt that during construction the roof had collapsed Lwice and
was eventually built by eriminals condemned to death. Its central hall was
very long and had massive pillars. Budhuram had seen similar pillars in
the temples of his native Hindoostan and knew the ressous for them. In
fact he had a simple scaling argument for their existence. Budhuram also
noticed that the church had long stained glass windows. But these were
not the only interesting features. As he walked down what he thought was
8 long straight hall he espied a square room to the side. This room had
a similar smaller square room atiached which in turn had other smaller
square rooms.

The whole church had a labyrinthine of such rooms. He sketched a part
of it. Being adept Lie quickly calculated the (fractal) dimension of the
“monster” curve suggested by his sketch. After all in his travels he had
familiarized himself with the work of Weierstrass and his disciples in this
field. But he had no explanation for their existence.

In the evening he returned to the inn where he was lodged. He sat for din-
ner in the bar attached to the inn. And brooded over the existence of the
large windows and the labyrinthine structure of the church. What motives
could he attach to the builders of this strange structure? He thought of his
mentor, the venerable VAS of Cawnpore. VAS had frequently admonished
him on being quick in mathematics but dim-witted in the natural sciences.
Perhaps he was right. “SEEK DISORDER, SEE DISORDER", the
venerable, worldly wise, and weary VAS had exhorted. That was one
reason Budhuram had taken to travel and was staying in the squalid inn
instead of the serene monastery nearby. A drunken brawl broke out in the
bar. This was too much for the “order-minded” Budhuram. He fled to
his room upstairs. The room was small, damp and dark. He lit a candle,
As the brightness suffused the room, Bndhuram sat back and smiled. He
had chanced upon the enswers to the questions which had intrigued him
all day. [The above passage is taken from a text discovered from



a dilapidated siructure near the ruins of Naolanda Monastery
(University). It is dated circa nineteenth century|

Questions

I

10.

il

12.

What was the [ractal dimension of the church?

Can you guess the scaling argnment for the existence of the massive pillars
which Budhuram seem to know so well?

Why did the chureh have a “fractal” structure?
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Figure 1: (a) The outline of the raw fruil ol kadamn, [b) ‘T'he path of a swiimming
algue, (¢)The capacitance transient or nuclesr decay curve,
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Figure 2: Coustlines viewed as we come closer.
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Figure 3: The Koch curve

Table 1: The scale ! decreases successively as N(I) increases. The Table is for
the Koch curve,

No. of iterations (n) | { N(l)
0 1 1

1 1/3 |4

2 1/9 | 16

3 1/27 | 64

4 1/81 | 256




Cantor dust

Figure 4: The Cantor Dust,

Table 2: As the scale [ decreases, N(I) increases.

No. of iterations () | { N{l)
0 1 1
1 173 |2
2 179 |4
3 1/27 | 8
] n=10
0
n= |
0 112 314 1
/\ /T/\lf\_ n=2
0 114 1/2 3/4 ]

Figure 5: The asymmetric Koch curve

11,



"
central cell

Figure 6: Section of soap bubble
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Figure 7: Voronoi honeycomb for (a) a set of random points; (b) n set of random
points with the constraint that they are no closer than a certain minimum
distance.



(a) (c) (e}

(b) (d) {H

Figure 8: Packing of two-dimensional cells to fill a plane: (a. b) Two packings
of equilateral triangles with Z. = 6, and Z, = 4, respeciively. When Z, = 4,
n = 4, topologically. (c. d) Two packings of squares with Z, = 4 and Z, = 3,
respectively. When Z, = 3, n = 6 topologically. (e) Packing of regnlar hexagons.
(f) Packing of irregular hexagons.
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Balloen of rubber
metal spheres
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Figure 11:

Figure 12:
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Figure 13: Some of Budhurams sketches of the interiors of the cathedral
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