Neutrino Physics:
Lecture 2: Neutrino mixing and oscillations
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Lecture 1: Neutrino detection and basic properties

@ Unique properties
@ Discovery of neutrino flavours
@ Measuring mass, helicity, interactions

Lecture 2: Neutrino mixing and oscillations

@ Solar and atmospheric puzzles and solutions
@ Neutrino mixing, oscillations, flavour conversions
@ The three-neutrino mixing picture

Lecture 3: Neutrinos in astrophysics and cosmology

@ Low-energy (meV) cosmological neutrinos
@ Medium-energy (MeV) supernova neutrinos
@ High-energy (> TeV) astrophysical neutrinos




Neutrino Physics: an Introduction (Lecture 2)

@ Solar and atmospheric neutrino puzzles
e Atmospheric v solution: mixing and vacuum oscillations
© The path to the solution for solar v puzzle

6 The three-neutrino mixing picture



Neutrino Physics: an Introduction (Lecture 2)

0 Solar and atmospheric neutrino puzzles



Neutrinos from the Sun

Hydrogen burning: Proton-Proton Chains
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The solar neutrino spectra
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@ Magnitudes of fluxes depend on details of solar interior
@ Spectral shapes robustly known J




Detecting neutrinos from the Sun

@ The Sun produces ve
@ These v can be detected at Earth: difficult, but possible J
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Seeing the Sun with neutrinos

@ Light from the Sun’s surface:
due to nuclear reactions
millions of years ago

@ Neutrinos from the Sun’s core:
due to nuclear reactions
8 minutes ago

@ We know how much light we get
from the Sun...

@ So we know how many
neutrinos should arrive.

BUT...




really understand how the Sun shines ?

Total Rates: Standard Model vs. Experiment
Bahcall-Pinsonneault 2000
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The solar neutrino puzzle

@ Only about 30%—-50% of neutrinos from the Sun found

@ Different experiments give different neutrino loss...
(They look at different energy ranges, of course..)

@ SuperKamiokande shows similar neutrino loss at all
energies



Possible resolutions of the puzzle

@ The astrophysicists cannot calculate accurately
@ The experimentalists cannot measure accurately

@ Neutrinos behave differently from what everyone thought !

.... remained unresolved for about 40 years !



Neutrino production from cosmic rays

30000 m

Secondary
cosmic rays

Vi
20000 m

o 1t = put +u,
ot s ettty

10000 m




inos detected in India
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Neutrino production from cosmic rays
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Atmospheric neutrino puzzle

Double ratio:

(a) e-like
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Atmospheric neutrino puzzle

Zenith angle dependence:
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Preliminary observations from zenith angle data

@ Electron neutrinos match predictions
@ High energy v, from above: match predictions
@ High energy v, through the earth: partially lost

@ Low energy v,: lost even when coming from above, loss
while passing through the Earth even greater



Where are we now

@ About 20 years ago: in the middle of two long-standing
puzzles



Neutrino Physics: an Introduction (Lecture 2)

e Atmospheric v solution: mixing and vacuum oscillations



The breakthrough idea

Bruno Pontecorvo
(original idea suggested for solar neutrinos,
with neutrino-antineutrino mixing.)

B—/M‘fﬂo T o wiesc opdo—

Maybe the neutrino flavours change !
@ All the experiments are looking for ve and v,

@ What if ve / v, are getting converted to v, ?

@ This is possible, but only if the neutrinos have different
masses and they mix !




What is meant by neutrino mixing ?

Neutrino flavours ve, v,,, v do not have fixed masses !!

For example, ve—v, mixing:

I V> = V. sin 0 + W cos O

I VY, = V. cos O+ Vusin©

cos’0 sin’o

@ Only v and v» have fixed masses
(They are eigenstates of energy / eigenstates of evolution)

@ Then, if you produce v, it may be observed as v, !




Effective Hamiltonian for a single neutrino

m? m?
H= \/p2+m2~p+5~p+2E

Schrédinger’s equation:

.d
Mt v(t)) = Hlv(t))
Time evolution:

() = [v(0)e ™

= |(0))e Fle !

@ Simple for a mass eigenstate with fixed momentum !



Time evolution for a flavour eigenstate

@ Initial flavour state |v,):

|Va) = cOSO|v1) + Sinb|vo)

@ State after time ¢:

2

2
va(t)) = cos Bl )e Ple 2t 1 sinb|vy)e Ple izt !

@ “Survival” probability of finding the flavour |v,,) at time t:

P(va — va) = |<Va|7/a(t)>|2



Vacuum oscillations

AmPL
4F

P(vo — va) = 1 — sin? 26 sin? (

Am? =ms — m?
(In Natural units, where c =1 = h)
Amplitude, wavelength:



Neutrino oscillations as a function of distance travelled
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Broad features of atmospheric v data explained

@ Electron neutrinos match predictions
@ High energy v, from above: match predictions
@ High energy v, through the earth: partially lost

@ Low energy v,: lost even when coming from above, loss
while passing through the Earth even greater



The zenith angle dependence (1998) !

Zenith ana(e dependence
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Atmospheric v solution through “vacuum oscillations”

@ Neutrino flavours mix with each other
@ Neutrinos have different masses
@ v, do not participate in the oscillations

y

Neutrino oscillations: v, oscillate into v~
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e Measurements can determine sin 20,,,, and Anm2,,.




Neutrino Physics: an Introduction (Lecture 2)

© The path to the solution for solar v puzzle



The breakthrough idea

Bruno Pontecorvo
Original idea with v — 7 mixing

E/V%a Tonwiescopd—

Maybe the neutrino flavours change !

@ All the experiments are looking for ve

@ What if v, are getting converted to other flavours of
neutrinos (v, or v;) ?

@ This is possible, but only if the neutrinos have different
masses and they mix !




Neutrino flavour changes inside the Sun

John Lincoln Stanislav Alexei
Bahcall Wolfenstein ~ Mikheyev Smirnov

@ Bahcall: Calculated the neutrino production inside the Sun
in detalil

@ Wolfenstein: Showed that the neutrino mixing gets affected
by the matter inside the Sun

@ Mikheyev — Smirnov: Showed how these matter effects
affect the neutrino flavour changes




Heavy water Cherenkov experiment: SNO

@ | Heavy water Cherenkov\
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Solar neutrino problem settled (2002)

Total Rales: Standard Model vs. Experiment
Bahcall-Pinsonneault 2000
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@ All neutrinos from the Sun are now accounted for !
@ Our understanding of the Sun is vindicated... J




Solution of solar neutrino problem

@ e mixes with v, /v,

@ Survival probability is almost flat:
no oscillations observable but “flavour conversions”

@ The measurements can determine sin® 6.,

@ To determine Amg accurately, have to conduct terrestrial
experiments (using reactors)
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6 The three-neutrino mixing picture



Three-neutrino mixing and open questions

Mixing of ve, 1, v; = 11,12, /3 (Mass eigenstates)
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@ Mass ordering: Normal or Inverted ?

@ What are the absolute neutrino masses ?
@ Are there more than 3 neutrinos ?

@ |s there leptonic CP violation ?

@ Can neutrinos be their own antiparticles ?




And how do neutrinos get their mass at all ?

@ In Standard Model of particle physics, the mass arises
from the interaction between a left-handed particle, a
right-handed particle, and Higgs.

For example, e;, er and h come together to give mass to
the electron, which contains both e¢; and eg.

@ But there is no right-handed neutrino !
= Higgs mechanism is not enough

@ There has to be something beyond the Standard Model,
perhaps even beyond our current imagination.



Bigger detectors, ambitious experiments

® Three types of large multi-purpose underground detectors with astrophysical program

Water Cherenkov (=0.5 — 1 Mton)

MEMPHYS — i1 S0
Liquid Scintillator (— 50 kton)

LENA

Liquid Argon (=10—100 kton)
GLACIER

@ Megaton water
Cherenkov
detectors

@ 50 kiloton
scintillator
detectors

@ 100 kiloton liquid
Ar detectors

@ Deep
Underground
Neutrino
Experiment
(DUNE)

@ Detector 1600 km
away from source



Below the antarctic ice: Gigaton lceCube

1000 000 000 000 litres of ice )

w Layer

lceCube




Coming soon inside a mountain near you: INO

> 5.6 .cm thick iron plate

> 4 cm air gap for RPC
detector

India-based Neutrino Observatory

@ In atunnel below a peak (Bodi West Hills, near Madurai)
@ 1 km rock coverage from all sides

@ 50 kiloton of magnetized iron (50 000 000 kg)

@ Can distinguish neutrinos from antineutrinos

@ Determining mass hierarchy from atmospheric neutrinos

o’




Where are we now (end of Lecture 2)

@ Atmospheric neutrino problem solved through neutrino
mixing and vacuum oscillations

@ Solar neutrino problem solved through neutrino mixing,
and modification of vacuum mixing due to matter

@ Determination of three-neutrino parameters one of the
main goals of worldwide experiments
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